Reg. No. :

Question Paper Code : 70479

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2021.

Fifth Semester

Electrical and Electronics Engineering

EE 6504 — ELECTRICAL MACHINES II

(Regulations 2013)

(Common to PTEE 6504 — Electrical Machines II for B.E. (Part-Time) — Fourth Semester — Electrical and Electronics Engineering -Regulations 2014)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Write the equation for frequency of emf induced in an alternator.
- 2. Identify the type of synchronous generators that are used in hydroelectric plant.
- 3. When is synchronous motor is said to receive 100% excitation?
- 4. What are the causes of hunting?
- 5. How can the direction of rotation of 3 phase induction motor be reversed?
- 6. What is the advantages of skewing the rotor slots?
- 7. What is the effect of change in input voltage on starting torque of induction motor?
- 8. State two advantages of speed control of induction motor by injecting an e.m.f in the rotor circuit.
- 9. What is the function of centrifugal switch in a single phase induction motor?
- 10. Mention the applications of stepper motor.

PART B — $(5 \times 13 = 65 \text{ marks})$

- 11. (a) (i) Explain step by step method of potier triangle method of determining the regulation of an alternator. (6)
 - (ii) A 30MVA, 15KV, 60Hz ac generator has a synchronous reactance of 1.2 pu and a resistance of 0.02 pu. Calculate
 - (1) the base voltage, base power and base impedance of the generator,
 - (2) the actual value of the synchronous reactance,
 - (3) the actual winding resistance, per phase
 - (4) the total full-load copper losses. (7)

Or

(b) A 3 phase Y-connected, 1000 KVA, 2000 V, 50 Hz alternator gave the following open-circuit and short circuit test readings :

Field current (A) :	10	20	25	30	40	50
O.C. Voltage (V) :	800	1500	1760	2000	2350	2600
S.C. armature current (A) :	_	200	250	300	_	_

The armature effective resistance per phase is $0.2 \ \Omega$. Draw the characteristic curves and determine the full load percentage regulation at

- (i) 0.8 p.f lagging,
- (ii) 0.8 p.f leading by MMF method. (13)
- 12. (a) Explain V-curves and inverted V-curves.

Or

- (b) Explain briefly the features and principle of operation of three-phase synchronous motor.
- 13. (a) Sketch and explain the torque slip characteristics of the 3 phase cage and slip-ring induction motors. Show the stable region in the graph. (13)

Or

- (b) (i) A 3 phase induction motor has a starting torque of 100% and a maximum torque of 200% of the full load torque. Determine:
 - (1) Slip at which maximum torque occurs;
 - (2) Full load slip;
 - (3) Rotor current at starting in per unit of full-load rotor current.

(7)

(ii) Explain the working principle of 3 phase induction motor. (6)

14. (a) Explain the speed control methods of a three phase induction motor. (13)

 \mathbf{Or}

- (b) With neat diagrams, explain the working of
 - (i) Star-Delta Starter
 - (ii) Auto Transformer Starter for 3 phase induction motor. (13)
- 15. (a) (i) Derive the equivalent circuit of a single phase induction motor with the help of double field revolving theory. (8)
 - (ii) Describe the working of repulsion motor. (5)

Or

- (b) (i) Draw and explain the schematic diagram and torque-speed characteristic of capacitor-start, capacitor-run single phase induction motor. (6)
 - (ii) Write short notes on 'AC servo-motors'. (7)

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) Explain the V/F control technique in 3ϕ IM. (15)

Or

(b) With neat diagram, explain the construction and operation of shaded pole induction motor. (15)